Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.09.22282142

ABSTRACT

Importance: Post-acute sequelae of COVID-19 (PASC) produce significant morbidity, prompting evaluation of interventions that might lower risk. Selective serotonin reuptake inhibitors (SSRIs) potentially could modulate risk of PASC via their central hypothesized immunomodulatory, and/or antiplatelet properties and therefore have been hypothesized to be of potential benefit in patients with PASC, although clinical data are lacking. Objectives: The main objective was to evaluate whether SSRIs with agonist activity at the sigma-1 receptor lower the risk of PASC, since agonism at this receptor may serve as a mechanism by which SSRIs attenuate an inflammatory response. A secondary objective was to determine whether potential benefit could be traced to sigma-1 agonism by evaluating the risk of PASC among recipients of SSRIs that are not S1R agonists. Design: Retrospective study leveraging real-world clinical data within the National COVID Cohort Collaborative (N3C), a large centralized multi-institutional de-identified EHR database. Presumed PASC was defined based on a computable PASC phenotype trained on the U09.9 ICD-10 diagnosis code to more comprehensively identify patients likely to have the condition, since the ICD code has come into wide-spread use only recently. Setting: Population-based study at US medical centers. Participants: Adults ([≥] 18 years of age) with a confirmed COVID-19 diagnosis date between October 1, 2021 and April 7, 2022 and at least one follow up visit 45 days post-diagnosis. Of the 17 933 patients identified, 2021 were exposed at baseline to a S1R agonist SSRI, 1328 to a non-S1R agonist SSRI, and 14 584 to neither. Exposures: Exposure at baseline (at or prior to COVID-19 diagnosis) to an SSRI with documented or presumed agonist activity at the S1R (fluvoxamine, fluoxetine, escitalopram, or citalopram), an SSRI without agonist activity at S1R (sertraline, an antagonist, or paroxetine, which does not appreciably bind to the S1R), or none of these agents. Main Outcome and Measurement: Development of PASC based on a previously validated XGBoost-trained algorithm. Using inverse probability weighting and Poisson regression, relative risk (RR) of PASC was assessed. Results: A 26% reduction in the RR of PASC (0.74 [95% CI, 0.63-0.88]; P = 5 x 10-4) was seen among patients who received an S1R agonist SSRI compared to SSRI unexposed patients and a 25% reduction in the RR of PASC was seen among those receiving an SSRI without S1R agonist activity (0.75 [95% CI, 0.62 - 0.90]; P = 0.003) compared to SSRI unexposed patients. Conclusions and Relevance: SSRIs with and without reported agonist activity at the S1R were associated with a significant decrease in the risk of PASC. Future prospective studies are warranted.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.06.22280795

ABSTRACT

ImportanceCharacterizing the effect of vaccination on long COVID allows for better healthcare recommendations. ObjectiveTo determine if, and to what degree, vaccination prior to COVID-19 is associated with eventual long COVID onset, among those a documented COVID-19 infection. Design, Settings, and ParticipantsRetrospective cohort study of adults with evidence of COVID-19 between August 1, 2021 and January 31, 2022 based on electronic health records from eleven healthcare institutions taking part in the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, a project of the National Covid Cohort Collaborative (N3C). ExposuresPre-COVID-19 receipt of a complete vaccine series versus no pre-COVID-19 vaccination. Main Outcomes and MeasuresTwo approaches to the identification of long COVID were used. In the clinical diagnosis cohort (n=47,752), ICD-10 diagnosis codes or evidence of a healthcare encounter at a long COVID clinic were used. In the model-based cohort (n=199,498), a computable phenotype was used. The association between pre-COVID vaccination and long COVID was estimated using IPTW-adjusted logistic regression and Cox proportional hazards. ResultsIn both cohorts, when adjusting for demographics and medical history, pre-COVID vaccination was associated with a reduced risk of long COVID (clinic-based cohort: HR, 0.66; 95% CI, 0.55-0.80; OR, 0.69; 95% CI, 0.59-0.82; model-based cohort: HR, 0.62; 95% CI, 0.56-0.69; OR, 0.70; 95% CI, 0.65-0.75). Conclusions and RelevanceLong COVID has become a central concern for public health experts. Prior studies have considered the effect of vaccination on the prevalence of future long COVID symptoms, but ours is the first to thoroughly characterize the association between vaccination and clinically diagnosed or computationally derived long COVID. Our results bolster the growing consensus that vaccines retain protective effects against long COVID even in breakthrough infections. Key PointsO_ST_ABSQuestionC_ST_ABSDoes vaccination prior to COVID-19 onset change the risk of long COVID diagnosis? FindingsFour observational analyses of EHRs showed a statistically significant reduction in long COVID risk associated with pre-COVID vaccination (first cohort: HR, 0.66; 95% CI, 0.55-0.80; OR, 0.69; 95% CI, 0.59-0.82; second cohort: HR, 0.62; 95% CI, 0.56-0.69; OR, 0.70; 95% CI, 0.65-0.75). MeaningVaccination prior to COVID onset has a protective association with long COVID even in the case of breakthrough infections.


Subject(s)
COVID-19 , Breakthrough Pain
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.18.22273968

ABSTRACT

Naming a newly discovered disease is always challenging; in the context of the COVID-19 pandemic and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes Long COVID, it has proven especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. The clinical definition and our understanding of the underlying mechanisms of Long COVID are still in flux. The deployment of an ICD-10-CM code for Long COVID in the US took nearly two years after patients had begun to describe their condition. Here we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for "Post COVID-19 condition, unspecified." Our results include a characterization of common diagnostics, treatment-oriented procedures, and medications associated with U09.9-coded patients, which give us insight into current practice patterns around Long COVID. We also established the diagnoses most commonly co-occurring with U09.9, and algorithmically clustered them into three major categories: cardiopulmonary, neurological, and metabolic. We aim to apply the patterns gleaned from this analysis to flag probable Long COVID cases occurring prior to the existence of U09.9, thus establishing a mechanism to ensure patients with earlier cases of Long-COVID are no less ascertainable for current and future research and treatment opportunities.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260767

ABSTRACT

Importance: SARS-CoV-2 Objective: To determine the characteristics, changes over time, outcomes, and severity risk factors of SARS-CoV-2 affected children within the National COVID Cohort Collaborative (N3C) Design: Prospective cohort study of encounters with end dates before May 27th, 2021. Setting: 45 N3C institutions Participants: Children < 19-years-old at initial SARS-CoV-2 testing Main Outcomes and Measures: Case incidence and severity over time, demographic and comorbidity severity risk factors, vital sign and laboratory trajectories, clinical outcomes, and acute COVID-19 vs MIS-C contrasts for children infected with SARS-CoV-2. Results: 728,047 children in the N3C were tested for SARS-CoV-2; of these, 91,865 (12.6%) were positive. Among the 5,213 (6%) hospitalized children, 685 (13%) met criteria for severe disease: mechanical ventilation (7%), vasopressor/inotropic support (7%), ECMO (0.6%), or death/discharge to hospice (1.1%). Male gender, African American race, older age, and several pediatric complex chronic condition (PCCC) subcategories were associated with higher clinical severity (p [≤] 0.05). Vital signs (all p [≤] 0.002) and many laboratory tests from the first day of hospitalization were predictive of peak disease severity. Children with severe (vs moderate) disease were more likely to receive antimicrobials (71% vs 32%, p < 0.001) and immunomodulatory medications (53% vs 16%, p < 0.001). Compared to those with acute COVID-19, children with MIS-C were more likely to be male, Black/African American, 1-to-12-years-old, and less likely to have asthma, diabetes, or a PCCC (p < 0.04). MIS-C cases demonstrated a more inflammatory laboratory profile and more severe clinical phenotype with higher rates of invasive ventilation (12% vs 6%) and need for vasoactive-inotropic support (31% vs 6%) compared to acute COVID-19 cases, respectively (p <0.03). Conclusions: In the largest U.S. SARS-CoV-2-positive pediatric cohort to date, we observed differences in demographics, pre-existing comorbidities, and initial vital sign and laboratory test values between severity subgroups. Taken together, these results suggest that early identification of children likely to progress to severe disease could be achieved using readily available data elements from the day of admission. Further work is needed to translate this knowledge into improved outcomes.


Subject(s)
COVID-19 , Diabetes Mellitus , Asthma , Death
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.12.21249511

ABSTRACT

BackgroundThe majority of U.S. reports of COVID-19 clinical characteristics, disease course, and treatments are from single health systems or focused on one domain. Here we report the creation of the National COVID Cohort Collaborative (N3C), a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative U.S. cohort of COVID-19 cases and controls to date. This multi-center dataset supports robust evidence-based development of predictive and diagnostic tools and informs critical care and policy. Methods and FindingsIn a retrospective cohort study of 1,926,526 patients from 34 medical centers nationwide, we stratified patients using a World Health Organization COVID-19 severity scale and demographics; we then evaluated differences between groups over time using multivariable logistic regression. We established vital signs and laboratory values among COVID-19 patients with different severities, providing the foundation for predictive analytics. The cohort included 174,568 adults with severe acute respiratory syndrome associated with SARS-CoV-2 (PCR >99% or antigen <1%) as well as 1,133,848 adult patients that served as lab-negative controls. Among 32,472 hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March/April 2020 to 8.6% in September/October 2020 (p = 0.002 monthly trend). In a multivariable logistic regression model, age, male sex, liver disease, dementia, African-American and Asian race, and obesity were independently associated with higher clinical severity. To demonstrate the utility of the N3C cohort for analytics, we used machine learning (ML) to predict clinical severity and risk factors over time. Using 64 inputs available on the first hospital day, we predicted a severe clinical course (death, discharge to hospice, invasive ventilation, or extracorporeal membrane oxygenation) using random forest and XGBoost models (AUROC 0.86 and 0.87 respectively) that were stable over time. The most powerful predictors in these models are patient age and widely available vital sign and laboratory values. The established expected trajectories for many vital signs and laboratory values among patients with different clinical severities validates observations from smaller studies, and provides comprehensive insight into COVID-19 characterization in U.S. patients. ConclusionsThis is the first description of an ongoing longitudinal observational study of patients seen in diverse clinical settings and geographical regions and is the largest COVID-19 cohort in the United States. Such data are the foundation for ML models that can be the basis for generalizable clinical decision support tools. The N3C Data Enclave is unique in providing transparent, reproducible, easily shared, versioned, and fully auditable data and analytic provenance for national-scale patient-level EHR data. The N3C is built for intensive ML analyses by academic, industry, and citizen scientists internationally. Many observational correlations can inform trial designs and care guidelines for this new disease.


Subject(s)
Dementia , Ossification of Posterior Longitudinal Ligament , Severe Acute Respiratory Syndrome , Obesity , COVID-19 , Liver Diseases
SELECTION OF CITATIONS
SEARCH DETAIL